skip to main content


Search for: All records

Editors contains: "Wallach, H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wallach, H (Ed.)
    We study the problem of programmatic reinforcement learning, in which policies are represented as short programs in a symbolic language. Programmatic policies can be more interpretable, generalizable, and amenable to formal verification than neural policies; however, designing rigorous learning approaches for such policies remains a challenge. Our approach to this challenge-a meta-algorithm called PROPEL-is based on three insights. First, we view our learning task as optimization in policy space, modulo the constraint that the desired policy has a programmatic representation, and solve this optimization problem using a form of mirror descent that takes a gradient step into the unconstrained policy space and then projects back onto the constrained space. Second, we view the unconstrained policy space as mixing neural and programmatic representations, which enables employing state-of-the-art deep policy gradient approaches. Third, we cast the projection step as program synthesis via imitation learning, and exploit contemporary combinatorial methods for this task. We present theoretical convergence results for PROPEL and empirically evaluate the approach in three continuous control domains. The experiments show that PROPEL can significantly outperform state-of-the-art approaches for learning programmatic policies. 
    more » « less
  2. Wallach, H (Ed.)
    How can we help a forgetful learner learn multiple concepts within a limited time frame? While there have been extensive studies in designing optimal schedules for teaching a single concept given a learner's memory model, existing approaches for teaching multiple concepts are typically based on heuristic scheduling techniques without theoretical guarantees. In this paper, we look at the problem from the perspective of discrete optimization and introduce a novel algorithmic framework for teaching multiple concepts with strong performance guarantees. Our framework is both generic, allowing the design of teaching schedules for different memory models, and also interactive, allowing the teacher to adapt the schedule to the underlying forgetting mechanisms of the learner. Furthermore, for a well-known memory model, we are able to identify a regime of model parameters where our framework is guaranteed to achieve high performance. We perform extensive evaluations using simulations along with real user studies in two concrete applications: (i) an educational app for online vocabulary teaching; and (ii) an app for teaching novices how to recognize animal species from images. Our results demonstrate the effectiveness of our algorithm compared to popular heuristic approaches. 
    more » « less
  3. Wallach, H. ; Larochelle, H. ; Beygelzimer, A. ; Fox, E. ; Garnett, R. (Ed.)
  4. Wallach, H. ; Larochelle, H. ; Beygelzimer, A. ; d'Alché-Buc, F. ; null ; Garnett, R. (Ed.)
    In this paper, we consider the nonparametric least square regression in a Reproducing Kernel Hilbert Space (RKHS). We propose a new randomized algorithm that has optimal generalization error bounds with respect to the square loss, closing a long-standing gap between upper and lower bounds. Moreover, we show that our algorithm has faster finite-time and asymptotic rates on problems where the Bayes risk with respect to the square loss is small. We state our results using standard tools from the theory of least square regression in RKHSs, namely, the decay of the eigenvalues of the associated integral operator and the complexity of the optimal predictor measured through the integral operator. 
    more » « less
  5. Wallach, H. ; Larochelle, H. ; Beygelzimer, A. ; d'Alché-Buc, F. ; Fox, E. ; Garnett, R. (Ed.)
    Variance reduction has emerged in recent years as a strong competitor to stochastic gradient descent in non-convex problems, providing the first algorithms to improve upon the converge rate of stochastic gradient descent for finding first-order critical points. However, variance reduction techniques typically require carefully tuned learning rates and willingness to use excessively large "mega-batches" in order to achieve their improved results. We present a new algorithm, STORM, that does not require any batches and makes use of adaptive learning rates, enabling simpler implementation and less hyperparameter tuning. Our technique for removing the batches uses a variant of momentum to achieve variance reduction in non-convex optimization. On smooth losses $F$, STORM finds a point $\boldsymbol{x}$ with $E[\|\nabla F(\boldsymbol{x})\|]\le O(1/\sqrt{T}+\sigma^{1/3}/T^{1/3})$ in $T$ iterations with $\sigma^2$ variance in the gradients, matching the optimal rate and without requiring knowledge of $\sigma$. 
    more » « less
  6. Wallach, H ; Larochelle, H ; Beygelzimer, A ; d' Alché-Buc, F ; Fox, E ; Garnett, R (Ed.)